舞動數學 Trapezoidal Rule for Numerical Integration Trapezoidal Rule for Numerical Integration The Trapezoidal Rule approximates the integral of a function by dividing the area under the curve into trapezoids. Area=$\frac{1}{2}(a+h)h$ $f(x)=x^3+2x^2+3x+4$ $\displaystyle \int_a^b f(x)dx \approx \sum_{i=0}^{n-1} \frac{1}{2}\left( f(x_i)+f(x_{i+1}) \right) (x_{i+1}-x_i)$ Actual integral value=297.08 n=6 Sum of the areas of trapezoids=305.00 ERROR=7.92 n=11 Sum of the areas of trapezoids=299.06 ERROR=1.98 n=101 Sum of the areas of trapezoids=297.10 ERROR=0.02 As the number of trapezoids increases, the approximation of the integral becomes more accurate. 製作人:林宇星