The Non-homogeneous Fisler-Calabi Theorem with Its Proof Min-Chi Wang^a, Huu-Quang Nguyen^b, Ruey-Lin Sheu^c

^a Department of Mathematics, National Cheng Kung University, Tainan, Taiwan Email: sdhwwc@yahoo.com.tw

^b Department of Mathematics, Vinh University, Nghe An, Vietnam Email: quangdhv@gmail.com

^c Department of Mathematics, National Cheng Kung University, Tainan, Taiwan Email: rsheu@mail.ncku.edu.tw

Given two *n*-variate quadratic functions $f(x) = x^T A x + 2a^T x + a_0$, $g(x) = x^T B x + 2b^T x + b_0$, we aim to characterize analytically whether or not

 $\{x \in R^n : f(x) = 0\} \cap \{x \in R^n : g(x) = 0\} = \emptyset.$

When $n \geq 3$ and a = b = 0, $a_0 = b_0 = 0$, this is known as the famous Finsler-Calabi theorem^{1,2} (1936-1964), in which case the Finsler-Calabi theorem asserts that f = g = 0 has no common solution other than the trivial one x = 0 if and only if there exists a positive definite matrix pencil $\alpha A + \beta B \succ 0$. In this talk, we generalize the result of the Finsler-Calabi theorem to non-homogeneous quadratic functions and also give the proof.

¹P. Finsler, \ddot{U} ber das vorkommen definiter und semidefiniter formen in scharen quadratischer formen, Commentarii Mathematici Helvetici, 9 (1936) pp. 188–192.

²E. Calabi, *Linear systems of real quadratic forms*, Proceedings of the American Mathematical Society, 15 (1964), pp. 844–846.