雙語教學主題(國中八年級下學期教材)中垂線與角平分線 Practice/Test: Applications of triangle congruency Perpendicular bisectors and angle bisectors

Vocabulary

CPCTC		兩全等三角形的對應邊和對應角都對	
stands for corresponding parts of the		應相等	
congruent triangles are congruent			
Triangle congruence theorem		全等三角形全等性質(定理)	
Isosceles triangle	等腰三角形	two legs	兩腰
base angles	底角	vertex angle	頂角
angle bisector	角平分線	intersect	相交於
reflexive property	反身性(共用邊角)	bisect	平分
perpendicular	垂直平分線	The Pythagorean	畢氏定理
bisector		Theorem	
equilateral triangle	正三角形	Quadrilateral	四邊形
take the square	等號兩邊開根號	Simplify the	方程式化簡
root of both sides		equation	
respectively	按順序地	right triangle	直角三角形
arbitrary point	任意點	intersection point	交點
perimeter	周長	converse theorem	逆定理
trapezoid	梯形	equidistant	等距離的
measure	度量、測量	segment	線段

(我個人很喜歡這個 CPCTC 的表示法,否則要寫很多中文字...)

老師們好,這是全等三角形的應用練習一中垂線和角平分線。這份教材的前半 是題目加解答,後半是題目,方便老師們參考使用。老師們可以依據學生的需 求選取適當的題目供學生做小測或是練習。

Q1: D A٩ In trapezoid ABCD, $\overline{AD} / / \overline{BC}$, $\angle C = \angle ABE = 90^{\circ}$, \overline{AE} is the angle bisector of $\angle BAD$. Е If $\overline{CD} = 10$, $\overline{BC} = 2\sqrt{5}$, find the measure of \overline{BE} . С

ANSWER:

We need to find the measure of \overline{BE} , we certainly look into ΔBCE . In ΔBCE , $\angle ABE=90^{\circ}$, then

$$\overline{\mathsf{BE}}^2 = \overline{\mathsf{BC}}^2 + \overline{\mathsf{CE}}^2 \quad \dots \dots (1)$$

BC is given, and $\overline{CE} = \overline{CD} - \overline{DE} = 10 - \overline{DE}$ But $\overline{DE} = \overline{BE}$ (Property of angle bisector)

Let \overline{BE} be x, then $\overline{DE} = \overline{BE} = x$ and the equation(1)

$$\overline{BE}^2 = \overline{BC}^2 + \overline{CE}^2$$

Will be

$$x^{2} = (2\sqrt{5})^{2} + (10 - \overline{DE})^{2}$$
$$x^{2} = (2\sqrt{5})^{2} + (10 - x)^{2}$$

Simplify the equation,

x=6

That is:

ANSWER:

Sol:

(1) Because $\overline{MN} \perp \overline{AB}$, and $\overline{AN} = \overline{BN}$, according to

the converse statement of perpendicular bisector of a segment, point N is on the perpendicular bisector \overline{MN} of segment AB. We get

$$\overline{AM} = \overline{BM} = \frac{1}{2}\overline{AB} = 5_{\#}$$

(2) If we want to get the length of \overline{AN} , we need to look into the right triangles AMN or ACN. But in $\triangle AMN$, we only know the length of \overline{AM} , it's impossible to get two other side lengths of $\triangle AMN$ under this situation. On the other hand, in $\triangle ACN$, we have some related given information. So let's do it

In the right triangle ABC, $\overline{AB} = 10$, $\overline{AC} = 6$, By the Pythagorean theorem,

$$\overline{BC}^{2} = \overline{AB}^{2} - \overline{AC}^{2}$$

$$= 10^{2} - 6^{2}$$

$$= 64$$
Get $\overline{BC} = 8$
Let $\overline{AN} = \overline{BN} = x$ (Property of perpendicular bisector)
Then $\overline{CN} = \overline{BC} - \overline{BN} = 8 - x$
In the right ΔACN ,
 $\overline{AN}^{2} = \overline{AC}^{2} + \overline{CN}^{2}$ (The Pythagorean theorem)
 $X^{2} = 6^{2} + (8 - x)^{2}$
 $x^{2} = 36 + 64 - 16x + x^{2}$
 $x = \frac{25}{4}$
i.e. the length of $\overline{AN} = \frac{25}{4} \#$

(3) According to the information we have, I think the easiest way to get the area of ΔAMN is

The area of
$$\triangle AMN = \frac{1}{2} \cdot \text{the area of } \triangle ABN$$

$$= \frac{1}{2} \text{ (the area of } \triangle ABC \text{-the area of } \triangle ACN)$$

$$= \frac{1}{2} \left(\frac{8 \cdot 6}{2} - \frac{\left(8 - \frac{25}{4}\right) \cdot 6}{2} \right) \qquad (\overline{CN} = \overline{BC} - \overline{BN} = 8 - \frac{25}{4}$$
Sorry a little ugly)

$$= \frac{75}{8} \#$$

intersects	BC at point E.			
Line L is the perpendicular bisector of $\overline{\mathrm{AC}}$, and				
intersects \overline{AE} at point D.				
If \angle DCE=24 $^{\circ}$, find the measure of \angle CDE.				
ANSWER				
Sol:				
In ∆ABC,				
Let	∠BAE=∠CAE=x°	$(\overline{AE} \text{ bisects } \angle BAC)$		
Then				
	∠ACD=∠CAD=X°	(Line L is the perpendicular bisector of $\overline{\mathrm{AC}}$)		
And	∠CDE=2x°	(Triangle exterior angle theorem of Δ ACD)		
	∠AEB=2x°+24	(Triangle exterior angle theorem of $\Delta{\sf CDE})$		
In ∆ABC,				
	∠A+∠B+∠AEB=180°	(Triangle interior angle sum theorem)		
x° +90 $^{\circ}$ + 2 x° +24=180 $^{\circ}$ (Replace all the information above)				
3x°=66°				
x=22#				

Let's go back to the equation

The area of
$$\triangle ABC = \frac{1}{2} \overrightarrow{CG} \cdot \overrightarrow{AB}$$

= $\frac{1}{2} 8 \cdot 12$
= 48

On the other hand, we can get the area of ΔABC by adding up the area of ΔABC and the area of ΔACD .

The area of $\triangle ABC$ = the area of $\triangle ABD$ + the area of $\triangle ACD$

$$48 = \frac{1}{2} \overrightarrow{DF} \cdot \overrightarrow{AB} + \frac{1}{2} \overrightarrow{DE} \cdot \overrightarrow{AC}$$
$$48 = \frac{1}{2} \times 12 + \frac{1}{2} \times 10$$
$$x = \frac{48}{11} \#$$

Get

So the distance from point D to segment AB is $\frac{48}{11}$.

Q8:

The side length of an equilateral triangle is 6.

Find

(1) The length of the height and

(2) The area

of this equilateral triangle.

ANSWER

Sol:

(1) The length of the height of this equilateral triange

$$=\frac{\sqrt{3}}{2} \cdot 6$$
$$= 3\sqrt{3}$$

(2) The area of this equilateral triangle

$$=\frac{\sqrt{3}}{4}\cdot 6^2$$
$$=9\sqrt{3} \#$$

Reminder:

The side length of an equilateral triangle is a, then

The height of this equilateral triangle is

$$\frac{\sqrt{3}}{2}a$$

And the area of this equilateral triangle is

$$\frac{\sqrt{3}}{4}a^2$$

ANSWER E, A Sol: В Since it talks about the area, we need more perpendicular lines for sure.) D F C Construct $\overrightarrow{\mathsf{BE}} \perp \overrightarrow{\mathsf{DA}}$, $\overrightarrow{\mathsf{BF}} \perp \overrightarrow{\mathsf{DC}}$, $\overrightarrow{\mathsf{BE}}$ and $\overrightarrow{\mathsf{BF}}$ intersects $\overrightarrow{\mathsf{DA}}$ and $\overrightarrow{\mathsf{DC}}$ at point E and point F respectively. \overline{BD} bisects $\angle ADC$, then $\overline{BE} = \overline{BF}$ (The property of angle bisector) Let a Δ stand for the area of a triangle. Гhen $\frac{a_{\triangle}CBD}{a_{\triangle}ABD} = \frac{\frac{1}{2}\overline{BF}\cdot\overline{CD}}{\frac{1}{2}\overline{BE}\cdot\overline{AD}} = \frac{\overline{CD}}{\overline{AD}} = \frac{7}{11}$ $a \Delta CBD = \frac{7}{11} a \Delta ABD$ So the area of quadrilateral ABCD= a Δ CBD+ a Δ ABD $=\frac{7}{11}a_{\triangle}ABD+a\,\Delta\,ABD$ $=\frac{18}{11}a_{\triangle}ABD$ $=\frac{18}{11}\cdot 33$ =54#

QUESTIONS ONLY:

Reference:

教育部國民中學數學108 課綱 教育部審定國民中學數學科南一、康軒以翰林及第五冊課本

製作者 北市金華國中 郝曉青