雙語教學主題(國中八年級下學期教材):三角形全等 Practice/test: Applications of triangle congruenc

老師們好,這是全等三角形的應用練習。這份教材的前半是題目加解答,後半 是題目,方便老師們參考使用。老師們可以依據學生的需求選取適當的題目供 學生做小測或是練習。

СРСТС			
stands for corresponding parts of the		兩全等三角形的對應邊和對應角都對	
congruent triangles are congruent		應相等	
Triangle congruence theorem		全等三角形全等性質(定理)	
馮	對應邊	corresponding	對應角
		angles	
congruent sides	等邊	Congruent angles	等角
included side	夾邊	included angle	夾角
bisect	平分	statement	敘述、語句
TWO COLUMN	兩行式證明	Reflexive property	自反性、反身性
PROOFS			(自已等於自己)
bisect	平分	angle bisector	角平分線
fill in the blanks	填空	trisect	三等分
Quadrilateral	四邊形	midpoint	中點
Triangle angle sum	三角形內角和	intersect	相交於
theorem	定理		
equilateral triangle	正三角形	collinear	共線
vertical angle	對頂角		

Vocabulary

(我個人很喜歡這個 CPCTC 的表示法,否則要寫很多中文字...)

Q 1:		A			
In \triangle ABD and \triangle CBD, \angle A = \angle C, \overrightarrow{BD} bisects \angle ADC.					
Prove that: $\triangle ABD \cong \triangle CBD$					
		C			
老師們,這個例子是讓大家參考,在國外,很多的三角形證明問題,會用以					
下的形式呈現。所謂的 TWO COLUMN PROOFS. 我們當然還是沿用我們習慣					
的形式就好。					
ANSWER:					
Pf:					
Let's mark the congruent sides and angles on the triangles.					
In $\triangle ABD$ and $\triangle CBD$,	statement	reasons			
	$\angle A \cong \angle C$	Given			
	 BD bisects ∠ADC	Given			
	$\angle ADB \cong \angle CDB$	Definition of angle bisector			
We have two pairs of congruent					
angles, we need a pair of					
congruent sides, so we use	$\overline{BD}\cong\overline{BD}$	Reflexive property			
Then we get	$\Delta \operatorname{ABD} \cong \Delta \operatorname{CBD}$	AAS			
其實跟我們平常的證明過程大同小異,重要的條件和理由都有說明就好。不					
過,我們的邊角相等用"=",外國人會用"≅"符號;現在他們也沒有那麼嚴格					
要求了。					

 $\angle ADM = \angle BCM = 90^{\circ}$ (The angle measurement of any interior angle of a square is 90°) And \angle ECM=180° - \angle BCM (Line BE forms a straight angle) =180° - 90° = 90° $\angle ADM = \angle ECM = 90^{\circ}$ (Point M is the midpoint of \overline{CD}) CM=DM We need one more congruent sides or congruent angles, so we see ∠AMD=∠CME (vertical angles are congruent) Then $\Delta \operatorname{ADM} \cong \Delta \operatorname{ECM}$ (ASA) (From (1)) $\Delta \mathsf{ADM} \cong \Delta \mathsf{ECM}$ (2) $\overline{AD} = \overline{CE}$ (CPCTC) $\overline{AD} = \overline{CE} = 5$ So (Given) $\overline{AB} = \overline{BC} = \overline{CD} = \overline{AD} = 5$ (All the sides are congruent in a square) Then The area of $\triangle ABE = \frac{1}{2} \overline{AB} \cdot \overline{BE}$ $=\frac{1}{2}\overline{AB}\cdot\left(\overline{BC}+\overline{CE}\right)$ $=\frac{1}{2}5\cdot(5+5)$ =25 # (3) Let's look right into Δ ECM $\angle ECM = 90^{\circ}$ CM=DM (From (1)) $\overline{CM} = \overline{DM} = \frac{1}{2}\overline{CD} = \frac{5}{2}$ So Since Δ ECM is a right triangle, $\overline{ME}^2 = \overline{MC}^2 + \overline{CE}^2$ (The Pythagorean Theorem) $=\left(\frac{5}{2}\right)^2+5^2$ $=\frac{5\cdot 25}{4}$ $\overline{\text{ME}} = \frac{5\sqrt{5}}{2} \#$

Then ∠BFG=180°-∠FGB-∠FBG =180°-∠AGE-∠AEG (Triangle angle sum theorem) =∠EAG =60° ∠DFE=180°-∠BFG (Points B, F, and D are collinear) =180°-60° =120° #

Q 9: Ε D In square ABCD, $DE = \overline{DF}$, $\angle ABE = 20^{\circ}$. (1) Prove that $\triangle ABE \cong \triangle CBF$ (2) The measure of $\angle BFE$ С ANSWER: Pf: (1) $\triangle ABE and \triangle CBF$, DE = DF (Given) AE AD - DE = $\overline{CD} - \overline{DF}$ ($\overline{AD} = \overline{CD}$, all sides of a square are congruent) = CF AB = BC(All sides of a square are congruent) And $\angle A = \angle D = 90^{\circ}$ (All interior angles in a square are right angles.) Then $\Delta ABE \cong \Delta CBF$ (SAS) (2) From (1), we have ∠ABE= ∠CBF $\overline{BE} = \overline{BF}$ (CPCTC) And We need to find the measure of \angle BFE, then we look into \triangle BFE. In ΔBFE , ∠EBF=∠ABC-∠ABF-∠CBF $=90^{\circ} - 20^{\circ} - 20^{\circ}$ = 50° Since BE = BF, ΔBFE is an isosceles triangle. We get ∠BEF-∠BFE (The two angles of an isosceles triangle opposite of the two congruent sides are congruent.) $\angle \mathsf{BFE} = \frac{1}{2} (180^\circ - \angle \mathsf{EBF})$ So

$$=\frac{1}{2}(180^{\circ} - \angle 50^{\circ})$$
$$= 65^{\circ} #$$

Q 10:

On the coordinate plane, point O is the origin. Point B and point D are on the y-axis.

In two right triangles $\ \Delta ABO \ and \ \Delta COD$,

 \angle ABO = \angle COD=90°, the coordinates of point C are (5,0),

 $\overline{AO} = \overline{CD} = 13$ and $\angle AOB = \angle CDO$.

Find the coordinates of point A.

ANSWER:

Sol:

If we want to get the coordinates of point A, we need to know the length of \overline{AB} and \overline{BO} . We see that a lot of congruent parts given between $\triangle ABO$ and $\triangle COD$. Let's see what we can get here.

D

0

B

С

х

In ΔABO and ΔCOD ,

$$\angle ABO = \angle COD = 90^{\circ}$$

$$\overline{AO} = \overline{CD} = 13$$

$$\angle AOB. = \angle CDO$$
 (Given)
Then $\triangle ABO \cong \triangle COD$ (AAS)
$$\overline{AB} = \overline{OC}$$

$$\overline{BO} = \overline{DO}$$
 (CPCTC)
Since $\overline{CD} = 13$ and $\overline{OC} = 5$,
$$\overline{DO}^2 = \overline{CD}^2 - \overline{OC}^2$$

$$= 13^2 - 5^2$$

$$= 144$$
We get $\overline{DO} = 12$
Therefore,
$$\overline{AB} = \overline{OC} = 5 \text{ and } \overline{BO} = \overline{DO} = 12$$
Point A is in the third quadrant,
So the coordinates of point A are (-5,-12)

QUESTIONS only:

Q 7: Α ABCD is a square. Point C is on line L. В D BM \perp L and intersects line L at point M, DN \perp L and intersects line L at point N. М Then (1) Prove that $\triangle BCM \cong \triangle CDN$ (2) If $\overline{AB} = 10$, $\overline{DN} = 6$, find the length of \overline{MN} Q 8: \triangle ABE and \triangle ACD are equilateral triangles. BD and CE intersect each other at point F. (1) Prove that $\triangle ACE \cong \triangle ADB$. (2) Find the measure of $\angle DFE$ Q 9: D In square ABCD, $DE = \overline{DF}$, $\angle ABE = 20^{\circ}$. (1) Prove that $\Delta ABE \cong \Delta CBF$ (2) The measure of $\angle BFE$ Q 10: On the coordinate plane, point O is the origin. Point B and point D are on the y-axis. In two right triangles $\triangle ABO$ and $\triangle COD$, $\angle ABO = \angle COD = 90^{\circ}$, the coordinates of point C are (5,0), $\overline{AO} = \overline{CD} = 13$ and $\angle AOB = \angle CDO$. Find the coordinates of point A.

Reference:

教育部國民中學數學 108 課綱 教育部審定國民中學數學科南一、康軒以翰林及第五冊課本

製作者 北市金華國中 郝曉青