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Applications of Differentiation |

Material Vocabulary

1. increasing (1£34 ), 2. decreasing (¥£i), 3. strictly
B () EEH I BEE
()EHEM R EBRB x, < 185 f(x:) < f(x2) * AT/ (x) EEAD 1 & P . _ o

N—— (Fcts$ ), 4. interval (% ), 5. tangent (*~ %), 6.

EHER I REERY x < BHf(x)</(v) W) EE[MT L

BIERAY - . 3 . . 3 g
() EHE / FERR x, <x, B8 /() > (r2) BB S (x) RS L | negative ( é m); 7. derivative (%ﬁt), 8. constant (#’

BBRIKER Y

EHEB I REERY x, < 88 /(x) 2 f(x) W) EEHIE L. L,

HEARE - #c), 9. positive (i =),

lllustrations |

and Functions
Definitions of Increasing and Decreasing Functions

(i) A function f is increasing on an I if for any two numbers x, and x, in the
interval, x, <x, implies f(x,)<f(x,).
A function f is increasing on an interval / if for any two numbers x, and x, in the interval,
x, <x, implies f(x,)<f(x,).
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(ii) A function f is strictly decreasing on an interval / if for any two numbers x; and x, in the

interval, x, <x, implies f(x,)> f(x,).

A function f is decreasing on aninterval / if for any two numbers x, and x, in the interval,

x, <x, implies f(x,)>f(x,).
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A function f is increasing if, as x moves to the right, its graph moves up, and is decreasing

if its graph moves down.
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Figure 1

For example, in Figure 1 the tangent® of the function f has a negative® slope for all x on
the interval (—oo,a), and a negative derivative’ implies that the function is decreasing on the
interval (—o,a).
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The function shown in Figure 1, the tangent of the function f is zero for all x onthe
interval (a,b),then f is constant® on (a,b).
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The function shown in Figure 1, the tangent of the function f has a positive® slope for all
x on the interval (a,oo) , and a positive derivative implies that the function is increasing on the

interval (a,).
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In fact, the of the derivative indicates whether the function's trend is increasing or

decreasing.
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Test for Increasing and Decreasing Functions
Let f be afunction that is on the closed interval [a,b] and on
the open interval (a,b).
(i) If f'(x)>0 forall x in (a,b), then f is strictly increasing on [a,b].
(ii) If f'(x)<0 forall x in (a,b), then f is strictly decreasing on [a,b] .
(iii) If f'(x)=0 forall x in (a,b), then f is constant on [a,b].
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It is noteworthy that the sign of the derivative will be negative or equal to 0 when the

function is decreasing and positive or equal to 0 when the function is increasing.
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Examples |

Find the open intervals on which f(x) =x>—3x+2 isincreasing or decreasing.

Solution

Note that f is differentiable on the real number line. To determine the

of f,set f'(x) equal to zero.
f(x)=x*-3x+2
f'(x)=3x"-3=0
3(x+1)(x-1)=0

x=1, -1




Because there are no points for which f' does not exist, you can conclude that x=1 and

x =—1 are the only critical numbers. The table summarizes of the three intervals determined by
these two critical numbers.

Interval —o<x<-1 -1 -1<x<1 1 1<x<o
Sign of f'(x) + 0 - 0 +
conclusion Increasing decreasing Increasing

So, f isincreasing on the intervals (—oo,—l) and (1,oo) and decreasing on the interval
(-1,1), as shown in Figure 2.

(_]?.f(_]))

(1, A1)

Figure 2

A function is strictly monotonic®® on an interval if it is either increasing on the entire interval

or decreasing on the entire interval. For instance, the function f(x)

x is strictly monotonic on

the entire real number line because it is increasing on the entire real number line, as shown in
Figure 3.
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The function f(x) = 0 ,0<x<1 shownin Figure 4 is not strictly monotonic on the

(X—l)z ,x>1

entire real number line because it is constant on the interval [0,1] .
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Definition of Concavity'®

(a) (b)
Figure 5

A function f is concave®” up (or convex*®, convex down) if every line segment joining two

points on its graph lies above’ the graph at any point, see figure 5(a). Symmetrically?’, a
function f is concave down (or concave, convex up) if every line segment joining two points on
its graph lies below?* the graph at any point, see figure 5(b).
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Figure 6

(i) Let f be differentiable on an open interval / . If the graph of f is concave up on 7, then the
graph of f lies above all of its tangent lines on I . See Figure 6(a).
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(ii) Let f be differentiable on an open interval [ . If the graph of f is concave down on I, then
the graph of f lies below all of its tangent lines on /. See Figure 6(b).
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Let f be differentiable on an open interval I . The graph of f is concaveupon [ if f'is
increasing on the interval and concave down on [ if f' is decreasing on the interval.
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To find the open intervals on which the graph of a function f is concave up or concave
down, you need to find the intervals on which f' is increasing or decreasing.
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By the test for increasing and decreasing functions, the sign of f” can determine whether
f' is decreasing or increasing. We describe the relationship of “The Sign of the Second Derivative
f" ” and “ The Concavity of Function f ” as follows.
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Test for Concavity

Let f be a function whose second derivative exists on an open interval /.




(i) If f”(x)>0 forall x in I, then the graph of f is concaveupon /.

(i) If f”(x)<0 forall x in I, then the graph of f is concave downon /.
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It is noteworthy that if a function is concave up on an interval, then the 2" derivative is
greater than or equal to 0. Similarly, if a function is concave down on an interval, then its 2"
derivative is less than or equal to 0.
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Examples Il

Determining Concavity

Determine the open intervals on which the graph of f(x) =x>—3x+2 is concave up or

down.
Solution

Begin by observing that f is continuous on the entire real line. Next, find the second
derivative of f.
f(x)=x*-3x+2
f'(x)=3x*-3
f"(x)=6x
Because f”(x) =6x=0 when x=0 and f" is defined on the entire real line, we test f” in

the intervals (—oo,O) and (O,oo) . The results are shown in the table and in Figure 7.

Interval (—,0) 0 (0,)
Sign of f"(x) — 0 +
Conclusion Concave down Concave up
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lllustrations IV
Points of Inflection??

The graph in Figure 8 has one point at which the concavity changes. If the tangent line to

the graph exists at such a point, which is a point of inflection (or an inflection point). There are
three types of points of inflection are shown.
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Definition of Inflection Points

Let f be a function that is continuous on an open interval and let a be a point in the

interval. If the graph of f has a tangent line at this point (a,f(a)), then this point is a point of

inflection of the graph of f if the concavity of f changes from upward to downward (or
downward to upward) at the point.
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Keys of Inflection Points
If (a,f(a)) is a point of inflection of the graph of f, then f"(a)=0.
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Determine the points of inflection and discuss the concavity of the graph of
f(x)=x*—6x*+5
Solution
Differentiating twice produces the following
f(x)=x*—6x*+5
f'(x)=4x*-12x
f'(x)=12x-12
Setting f”(x) =12x>*-12 =0, we can determine that the possible points of inflection

at x=-1 and x=1. A summary is shown in the table and the graph of f is shown in

Figure 8.
Interval (—o0,-1) -1 (-112) 1 (1,0)
Sign of £"(x) + 0 - 0 +
Conclusion Concave up Concave down Concave up

Figure 8
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